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Abstract. An approximate expression is derived for the amplitude for the spontaneous 
emission of a photon by a charged spin-! fermion as it is being deflected in an external 
field. The fermion is coupled to a spin-zero boson field through an interaction which is 
local and renormalisable. The external field is in the form of an intense pulse of radiation 
having a well defined direction of propagation. The essential restriction on the field is 
that it be slowly varying; its spectral composition is otherwise arbitrary. The transition 
amplitude obtained here depends only on the charge, mass and anomalous magnetic 
moment of the fermion. This result may be thought of as providing an external-field 
version of the low-energy theorem for ordinary Compton scattering which has been known 
for some years. 

1. Introduction 

Due to the advent of high-intensity laser sources there has been a fair amount of 
interest shown recently in theoretical studies of quantum electrodynamic processes 
which take place in the presence of an intense external electromagnetic field. (For a 
review, see Mitter 1975.) A typical process of interest, one with which we shall be 
concerned exclusively here, is the external-field version of Compton scattering: a 
charged particle is deflected in the laser field and emits a secondary (non-laser) 
quantum. The cross section for this process has been derived for the case where the 
charged particle is an electron, the interaction with the vacuum field being treated in 
lowest order (Brown and Kibble 1964, Narozhnyi et a1 1965). Under what other 
circumstances can one still obtain reasonably simple expressions for the transition 
amplitude for such a process? In examining this question it is helpful to keep in mind 
the soft-photon approximation obtained some time ago by Low (1954) and by Gell- 
Mann and Goldberger (1954) for ordinary Compton scattering of systems of spin 
It was shown that the first two terms in an expansion of the amplitude in powers of 
the photon frequency could be expressed explicitly in terms of the charge, mass and 
magnetic moment of the scatterer. This suggests that similar simplifications may arise 
in the analysis of high-intensity Compton scattering and indeed this is borne out by 
the results obtained below. 

Let us define in more explicit terms the model to be studied here. The scatterer 
is a charged spin-8 fermion locally coupled to spin-zero bosons. We assume the 
existence of a renormalised perturbation expansion in powers of this coupling and 
work to all orders in the expansion. Radiative corrections involving virtual photons 
are ignored here since we wish to avoid certain complications (infrared effects which 
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are not central to our present concerns) associated with the zero mass of the photon. 
The external field is taken to be sufficiently intense so that it may be treated classically. 
The interaction of the spin-$ fermion with the external field in initial and final states 
is then accounted for by introducing solutions of the Dirac equation containing, in 
addition to the minimal coupling with the field, a phenomenological Pauli term which 
accounts for the effect of the anomalous magnetic moment. As discussed by Becker 
and Mitter (1974), and earlier in a more formal manner by Klein (1955), the assumption 
that the interaction with the external field can be characterised by the charge and 
static magnetic moment of the particle is a reasonable one for a low-frequency field. 
We also expect that the spontaneous emission vertex of the non-laser photon can be 
specified in terms of the physical values of the charge and magnetic moment of the 
scattered particle. This is verified in 0 4, below. In doing so we make use of techniques 
developed earlier (Rosenberg 1982) in connection with the analysis of boson-fermion 
scattering in a slowly varying external field. Thus the characteristic and significant 
feature common to a class of low-frequency theorems, namely, that an amplitude for 
one process is determined by parameters which are in principle measurable by other 
experiments, is retained in the present version. 

2. Formulation 

We consider a spin-; particle (a proton, say) of charge e, mass m and anomalous 
magnetic moment pA propagating in an external plane-wave field. The field is assumed 
to be slowly varying but no other assumption is made concerning its spectral composi- 
tion and polarisation properties. In general the field will have an appreciable effect 
on the asymptotic motion of the particle so that a correct treatment of the particle-field 
interaction is required in the construction of the incoming and outgoing states. For 
the proton-field system these states are chosen as solutions of 

(2.1) 

where F@” = a@A” -8”” is the field tensor and U@,, = $(y,y,, - yYy,). The y, are the 
usual Dirac matrices satisfying y,yy + yyycL = 2g,,, with -goo = g l l =  gzz = g33 = 1. (We 
use natural units with ZZ = c = 1.) The vector potential A, is taken to be a function 
of U =-n * x = - n , x @  with n, =(1 ,n) /J2;  here n is a unit vector specifying the 
unique propagation direction of the plane wave. The condition 

[ y  (a - ieA) + m - ~ p ~ c ~ , , , P ” ] l l / , ( x  ; A) = 0 

d 
du 

d,A@ = --(n A )  = 0 

is satisfied by requiring that n A = 0. The potential is assumed to vanish for I u I  > uo. 
It is then possible to construct linear combinations of (modified) plane-wave solutions 
of equation (2.1) representing localised wave packets which spend only a finite amount 
of time in the field (Neville and Rohrlich 1971). 

Solutions $;’(x;A) of equation (2.1) are required which satisfy the correct 
boundary conditions: 9;’ reduces to the free plane wave exp(ip x ) l l / ( p )  for U < -u0, 
as does $;-’ for U > uo. Here $ ( p )  is the free spinor satisfying (iy * p + m)$(p )  = 0 
for p 2 +  m z  = 0. As demonstrated in detail in the papers of Becker and Mitter (1974) 
and Becker (1975) the solutions take the form 

$g’(x; A )  = exp(ip * x )  exp(-iS;’(u))XF’(u) (2.2a) 
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with 

s r ’ ( u ) =  J’ Ip(ii)dii 
-U0 

U 0  

$,-’(U) = -1 &(E) dii 
U 

We write 

(2 .2b)  

(2 .2c)  

(2 .2d)  

For pa = 0 we have J r ’  (U) = 1 ,  corresponding to the well known solution of Volkov 
(1935).  Construction of J E ’ ( u )  for the more general case has been discussed by 
Becker and Mitter (1974) and by Becker (1975) who show how the problem may be 
reduced to one involving a set of coupled first-order differential equations (which may 
be solved numerically). We shall not concern ourselves here with the general problem 
of solving these equations (explicit solutions have been given by Becker and Mitter 
for the special cases of a linearly polarised wave and a circularly polarised monochro- 
matic wave of infinite extent) but shall proceed here under the assumption that 
solutions are available in some approximation. Fortunately, a relation satisfied by the 
functions ,$’ which, as we shall see in $ 4 ,  is crucial in the development of the 
low-frequency approximation, can be established directly using known general proper- 
ties of the solution (see equation (3.4) of the paper by Becker (1975)).  That relation 
is 

[iy * p ( u ) + m ] x : ’ ( u )  = o (2.4)  

where 

p ( u ) = p - e A ( u ) + n I , ( u ) .  (2.5) 
It is interesting, with regard to physical interpretation, to observe that p ( u )  may be 
identified as the classically determined momentum for the charged particle in the field 
(Brown and Kibble 1964). It is of course not g(-’ which appears in the matrix element 
but &’ =,$I exp(-ip - x )  exp is:-’. Here ib-‘is the adjoint spinor, constructed from 
,y;-’ in the usual way (Jauch and Rohrlich 1976). Note that SF’ and SL-’ differ only 
by a constant. It will be convenient to ignore this difference (which merely redefines 
the phase of the transition matrix element) and take 

SE’ E S P  = [-lo IPba dl7. 

We consider a transition in which a proton, before it enters the field, is in a state 
with momentum p and spin index s. It leaves the field with momentum p ’  and spin 
s’, having emitted a non-laser photon of momentum q’ and polarisation E ’ .  The 
invariant amplitude for the transition may be written (with spin and polarisation 
indices suppressed) in the form 

& p ’ , q ‘ ; p ; A ) =  1 d4x’d4y’d4x&’(x’;A)exp(-iq’ - ~ ’ ) ? T ( x ’ ,  y ’ ; x ; A ) g : ’ ( ~ ; A ) .  

(2.6) 
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The form factor 9 ( x ’ ,  y ’ ;  x ; A )  represents the collection of Feynman matrix elements 
in configuration space which constitutes the spontaneous emission vertex. The 
modified Feynman rules, taking into account the presence of the external field, have 
been listed by Mitter (1975). In the absence of the field we have 9 ( x ’ ,  y ’ ;  x ;  A ) +  
9 ( x ’  - y ’ ;  x - y ’ )  with 

J d4x ’ d4y ’ d4x exp i(-p’ x ’ - 9’ y ’ + p  * x ) T ( x ’  - y ’; x - y ’) 

= ( 2 ~ ) ~ ~ ~ ( p ’ + q ’ - p ) e ~ ’ , r , ( p ’ ,  p ) ;  (2.7) 

here r, is the field-free vertex part in momentum space. A low-frequency approxima- 
tion for r,, which is consistent with the use of the modified Dirac equation (2.1) to 
describe the interaction of the proton with the external low-frequency field, is given by 

erS:a”c(p’,p) = e y ,  +pAc,y (p ’ -p )Y  (2.8) 

where e and FA represent the physical charge and anomalous magnetic moment, 
respectively, of the proton. 

3. Static approximation for the spontaneous emission vertex 

Here we neglect the effect of the external field on the structure of the spontaneous 
emission vertex and, furthermore, adopt the static approximation (2.8) for the vertex 
function. We return, in 9 4, to an analysis of the validity of this approximation. 

We begin with equation (2.6), but with the form factor 9 ( x ’ ,  y ’ ;  x ;  A )  replaced 
by its field-free value. To facilitate passage to momentum space we introduce the 
identity 

~ ~ ~ ; ’ ( x ’ ; A ) ~ ( x ’ - ~ ’ ; x - ) ; ’ ) ~ ~ ’ ~ x ; A ) = ~  -1 dw’ d i i ’ l  “ d w  -1 dE 
-m 2T -m -m2T -m 

x exp i[-w’(fi’- u ’ )+w( f i  - u)I,&’(E’) exp(iS,,(ii’)) exp(-ip’ * x ’ )  

x ~ ( x ’ - y ’ ; x  -y’)exp(ip .x)exp(-iS,(E))Xbf’(ii). (3.1) 

(This identity is immediately verified by first performing the integrations over w and 
w ’  using the integral representation of the S function.) The integrations over x ’ ,  y’ 
and x in the approximate version of equation (2.6) may now be carried out as in 
equation (2.7), but with replaced by rEatic. The result is 

(3.2) 

Further simplification can be achieved by making use of the light-like coordinate? 
(Mitter 1975). These are defined in terms of the four basis vectors n, n* = (1, - n ) / J 2  
and the real, orthogonal polarisation vectors s1 and s 2 ,  each orthogonal to n and n*. 
In this basis the components of an arbitrary vector V are VI = V, V2 = s2 * V, 
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Vu = -n  * V and Vu = -n* * V. Writing the S function in equation (3.2) as 

S ( p ;  +4 ;  - p l ) S ( p ;  +4; - p Z ) S ( p :  +4: - p , ) S ( p :  +4:  -pu +w‘- -w)  

w ’ =  w - ( p L  +4: - p , )  

we may perform the integration over w ’  and set 

(3.3) 

elsewhere in the integrand. Since the static vertex function depends only on 4’ the 
integrations over w and 2’ are easily carried out and we find 

~ ( ~ ’ , 4 ’ ; p ; A ) = ( 2 r r ) ~ S ( p ;  +4 ;  -pi)S(p; +4k - p 2 ) S ( p : + 4 L - p v )  
CO 

x dz2 exp i [S, ,(2) - S,(z2) + ( p :  + 4: -pu>21 I, 
Further reduction of this expression requires a specification of the form of the 

vector potential A(u). Brown and Kibble (1964) assumed a monochromatic plane 
wave of infinite extent and studied the Compton scattering of an electron, working 
to first order in the interaction of the electron with the vacuum field. The expression 
(3.4), when evaluated for the case of a monochromatic wave, differs from that arrived 
at by Brown and Kibble by the presence of terms involving /.LA. We shall not take 
the space here to study these extra terms in detail. We restrict ourselves to the 
observation that an examination of the expression (3.4) in the weak-field limit provides 
us with a partial check on its validity. To study this limit we may employ the 
approximate form for x:’, valid to first order in A,  which was given earlier (Rosenberg 
1982). It is then a simple matter to derive the amplitude for the process in which a 
single laser photon is absorbed and a non-laser photon is emitted. As expected, it 
takes the form one would obtain from second-order perturbation theory with emission 
and absorption vertices given by equation (2.8). 

4. Analysis of spontaneous emission vertex 

We return now to the expression (2.6) for a more careful analysis. We first observe 
that our earlier assumption that the effect of the external field on the form factor 
Y(x’, y ‘ ;  x ;  A) may be neglected entirely is suspect since it leads to an approximation 
which fails to satisfy gauge invariance. That is, with A,(u) +A,(u) +d,A(u) = 
A,(u) - n, dA/du we have 

& ) ( x ’ ;  A)JlF’(x; A) + exp[i(A ( U )  - A (U’))]&:)(X’; A)qjb+’(x; A) 

so that the product t&)(x’; A)Y(x’- y’; x - y ) J l F ’ ( x ;  A) is not invariant. The final 
version (3.4) is gauge invariant. This has come about from an improper treatment 
of the off-mass-shell contributions to the vertex function which just compensates for 
the original violation of gauge invariance. 

An improved approximation for the form factor Y(x’, y’; x ;  A )  which preserves 
gauge invariance can be obtained in a very simple form for the case of a slowly varying 
external field. At this point we shall follow very closely the arguments presented 
earlier (Rosenberg 1982) in an analysis of boson-fermion scattering in an external 
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field. (We shall refer to that earlier work as I.) The approximate kernel is taken to 
be of the form 

F(x’, y’; x;A)-exp[ieA(u’,x)]T(x’-y,x-y’) 
with 

c l  

(4.1) 

~ ( x ‘ ,  x )  = (x ’ -x)  * J dq A[u + q (U’- U)]. (4.2) 
0 

More generally (Schwinger 1951) A(x’, x) can be represented by a path-independent 
integral, reducing to (4.2) when the path is taken to be a straight line. The justification 
for the approximation (4.1) has been given in I for the analogous case of the 4-point 
function. To summarise that argument briefly, we consider the representation of 
F(x’,  y’; x ;  A )  as a collection of Feynman diagrams in configuration space. As shown 
in I the charged fermion propagator in the presence of the slowly varying external 
field may be approximated by 

G ~ x ‘ ,  x ; A ) = e x p [ i e A ( x ’ , x ) ] S , ( x ’ - x ;  m )  (4.3) 

where S, is the field-free causal fermion propagator. As a result of the local interaction 
with the spin-zero boson field charge may be passed from a fermion line to a boson 
line. Using an argument similar to that used in arriving at equation (4.3) we obtain 
an approximation for the boson propagator of the form 

Gb(x’, x ; A ) = e x p [ i e A ( x ’ , x ) ] A , ( x ‘ - x ;  p2)  (4.4) 

where Ac(x’-x; p2)  is the free propagator for a spin-zero particle of mass /I. As a 
consequence of the approximations (4.3) and (4.4), along with the path-independence 
property of the line integral, a charged particle line passing continuously through the 
diagram picks up an overall phase eA(x’, x), the same phase for each diagram. Since 
closed charged particle loops have no additional phase factors associated with them 
the only effect of the field in this approximation is to introduce the phase factor shown 
in equation (4.1). When this equation is combined with equation (2.6) we obtain the 
gauge invariant approximation 

$ ( p ’ ,  4’; p ;  A) = J d4x’ d4y’ d4x I&)(x’; A) 

xexp(-iq‘ * y’) exp[ieA(x’, x)]Y(x’-y’, x - y’)qbr)(x; A )  (4.5) 

Further analysis is facilitated by the introduction of the identity (generalising that 
for the transition amplitude. 

shown in equation (3.1) above) 

G$’(x’;A) exp[ieA(x‘, x)]Y(x‘-y’; x -y’)qbb+)(x;A) 

xexpi[wii-S,(E)+Q,(w, E’, E)  *x-w’E’ 

+S,*(E‘) - Q,~(w’, E’, 6) * x’] 
with 

1 

QP(w, E’, E) = p  +wn - e  dqA[E +q(E’-E)]. 

(4.6) 

(4.7) 
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The transition amplitude (2.6) may then be put in the form (3.2), with r y  replaced 
by r,[Q,n(w‘, E’, E), Q,(W, E‘, E)]. 

It will be convenient in the following to work in a particular gauge (the radiation 
gauge), in which A ,  = 0. If, in accordance with the assumption that the field is slowly 
varying, we ignore the variation of A in equation (4.7) we may write 

Q,(w, E’, n ) = Q p ( o ,  E)=p+wwn-eA(E) 

Qp,(@‘, E’, a)=Q,.(w’,  E’)=p’+w’n -eA(E‘). 

( 4 . 8 ~ )  

(4.86) 

Introduction of the light-like coordinates allows us to reduce the expression for the 
transition amplitude to 

~ ( p ’ , q ’ ; p ; ~ ) - ( 2 ~ ) ~ ~ ( ~ ’ 1  +d - p l ) ~ ( p ;  +d -p2)~(p:+q:-pu)  

with w’ given by equation (3.3). A measure of the degree to which the vertex function 
is off the mass shell is provided by the scalar variables 

5 = C?; (w, E) + m2 = 2n 0 p [ w  - Ip(E)]  

f ’ =  Q : , ( w ’ ,  E‘)+m2 = 2n p’[w’-Ip4E‘) ] .  

( 4 . 1 0 ~ )  

(4.106) 

The off-shell variables [ and 5‘ may be set equal to zero under a wide range of 
conditions consistent with the basic assumption of a slowly varying field. Thus, for 
S,  of order unity and Ip taken to be a quantity of first order (the intermediate-coupling 
regime) a Taylor series expansion of the vertex function about [ = 6’ = 0 may be 
introduced and, using an integration by parts procedure, the correction terms of first 
order in f and 5‘ may be shown to vanish (see I for the details of this argument). The 
series expansion technique fails in the strong-coupling regime, characterised by the 
condition S,(E) >> 1 inside the laser pulse. Instead we may apply a stationary phase 
argument, based on the rapid variation of the exponential in equation (4.9) as a 
function of iz for S,(E) >> 1. The stationary phase condition is w = Ip(ii). After 
replacing w by this value in the argument of the vertex function in equation (4.9) the 
integration over w may be carried out. This introduces a S function in (E’-a) so 
that the ii’ integration may be performed as well. A second application of the 
stationary phase argument leads to the condition 

p : + q :  - p ,  =Ip ( i z ) - Ip , ( i i ) .  (4.11) 

Setting w =I,(E) in equation ( 4 . 8 ~ )  gives 

Q, (U, E) -P p + Ip(E)n - eA(E) = p ( E )  (4.12) 

where p (  ii) is the classically determined momentum introduced earlier in equation 
(2.5). Similarly, from equations (4.86) and (4.11) we find that 

Qp,(w’,  E )  + p ’  + I,,(E)n - eA( E )  = p ‘ ( E ) .  (4.13) 
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Equation (4.9) now becomes 

gw, 4 ' ;  p ;  A ) = ( ~ ~ ) ~ S ( A  + q i  -pl)s(p; +4;  - p 2 ) s ( p :  +4: -PJ 
m 

x 

x e8 ' pj$' ( s )r, [ p' ( 1, p (S )]x r' (SI. 
dS exp i [S,,(S) - S,( i i )  + ( p :  + q: -pU)S]  I_, 

(4.14) 

The identical result is obtained by analysing the intermediate-coupling case along the 
lines indicated in I. 

The vertex function in equation (4.14) is on the mass shell since p 2 ( S )  + m2 = 
p " ( S )  + m2 = 0. Furthermore, by virtue of the conditions (2.4) the vertex may be 
represented in terms of two functions (the electromagnetic form factors) of the scalar 
variable [ p ( S )  -p'(f i ) ] '  (Schweber 1961). It follows from equation (4.11), and the 
presence of the S functions in equation (4.9), that at the point of stationary phase 
p ( S )  - p ' ( i i )  = q'. Since q" = 0 each form factor is evaluated for zero value of its 
argument. The result of these considerations is that th:: vertex function in equation 
(4.14) is to be replaced by its static limit, equation (2.8), and that equation (3.4) for 
the transition amplitude is recovered. 

5. Summary 

It has been shown that the assumption of the static approximation (2.8) for the 
spontaneous emission vertex function is valid under less restrictive circumstances than 
might have been expected a priori. The following remarks may be made in this 
connection. (i) Lowest-order perturbation theory for the fermion-boson interaction 
is not assumed. The parameters e and pA are renormalised quantities. The result is 
then analogous to that obtained by Low (1954) and by Gell-Mann and Goldberger 
(1954) who showed that the amplitude for ordinary Compton scattering of low-energy 
photons is given by second-order perturbation theory with vertices determined by the 
physical values of the static charge and magnetic moment of the scatterer. (ii) The 
effect of the external field on the vertex function has not been ignored entirely. To 
do so would violate gauge invariance and, for strong enough fields, would certainly 
be inappropriate. Rather, for fields which are slowly varying but not necessarily weak, 
the effect of the field on the vertex function is accounted for in an approximate way 
by the introduction of the phase factor shown in equation (4.1). The field has its 
primary influence on the incoming and outgoing states and that is treated exactly. 
(iii) The deviation of the vertex function off the mass shell need not be neglected at 
the outset. Off-shell effects are retained, but are seen to cancel under a wide range 
of conditions (characterised here as intermediate- and strong-coupling regimes) con- 
sistent with the underlying assumption of a slowly varying field. (iv) If the field is 
strong enough (strong-coupling case) many laser photons can be absorbed in the 
scattering process, with the spontaneously emitted photon carrying off an appreciable 
amount of energy. Nevertheless, the vertex function is to be evaluated on shell, as 
we have seen, so that even in this case only the static charge and magnetic moment 
of the scattered fermion enter into the calculation. (v) The choice of incoming and 
outgoing states as solutions of equation (2.1) is based on the assumption that the 
particle-field interaction is determined, asymptotically, by the static charge and mag- 
netic moment of the particle. It would then appear to be required, for consistency, 
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to adopt the static approximation for the spontaneous emission vertex. The present 
discussion, in so far as it verifies the validity of the static approximation, argues in 
support of the self-consistency of the calculation. 
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